$1,285.00

GFET-S20P for Sensing applications

  • GFET-S20P for Sensing applications
  • GFET-S20P for Sensing applications
  • GFET-S20P for Sensing applications
  • GFET-S20P for Sensing applications
  • GFET-S20P for Sensing applications
  • GFET-S20P for Sensing applications

GFET-S20P (Die size 10 mm x 10 mm) - Processed in ISO 7 Cleanroom

 

The GFET S-20 chip from Graphenea is designed for measurements in liquid medium. The new version provides 12 graphene devices, with encapsulation on the metal pads to avoid degradation and reduce leakage currents, and the probe pads located near the periphery of the chip. It also includes a non-encapsulated electrode at the center of the chip, which allows liquid gating without the need of an external gate electrode (such as Ag/AgCl probes). This device architecture enhances signal-to-noise ratio and reduces parasitics, and allows for multiplexing of signals within the same chip.

Typical Specifications

  • · Growth method: CVD synthesis
  • · Polymer assisted transfer
  • · Chip dimensions: 10 mm x 10 mm
  • · Chip thickness: 525 μm
  • · Number of GFETs per chip: 12
  • · Gate oxide thickness: 90 nm
  • · Gate oxide material: SiO2
  • · Resistivity of substrate: 1-10 Ω.cm
  • · Metallization: Au contacts
  • · Graphene field-effect mobility: >1000 cm2/V.s
  • · Encapsulation: ≈200 nm glutarimide-based
  • · Dirac point (back gating): ± 20V
  • · Dirac point (liquid gating): <1V
  • · Minimum working devices: >75 %

Absolute maximum ratings

  • · Maximum gate-source voltage (liquid gating in PBS): ± 2 V
  • · Maximum temperature rating: 150 °C
  • · Maximum drain-source current density: 107A.cm-2

     


Quality control

All our samples are subjected to a rigorous QC in order to ensure a high quality products.

  • · Optical Microscopy inspection of all the devices
  • · Raman spectroscopy of each fabrication batch
  • · Electrical characterisation of each fabrication batch

Applications

Graphene field-effect transistors (GFETs) have unprecedented sensitivity to the surrounding environment and is an ideal transducer for a variety of sensing applications.  Depending on the application, GFETs can be tuned to be sensitive only to the stimulus of interest and have shown breakthrough performance in areas such as bioelectronics, chemical sensing, graphene device research and biosensing.


Publications

"Graphene Sensor Arrays for Rapid and Accurate Detection of Pancreatic Cancer Exosomes in Patients’ Blood Plasma Samples"
https://doi.org/10.1021/acsnano.3c01812

"Graphene‑based field‑effect transistors for biosensing: where is the field heading to?"
https://doi.org/10.1007/s00216-023-04760-1

"Ultrasensitive detection of SARS-CoV-2 spike protein by graphene field-effect transistors" 
https://doi.org/10.1039/D2NR05103F

"Detection of Glial Fibrillary Acidic Protein in Patient Plasma Using On-Chip Graphene Field-Effect Biosensors, in Comparison with ELISA and Single-Molecule Array" 
https://doi.org/10.1021/acssensors.1c02232

"High On-Off Ratio Graphene Switch via Electrical Double Layer Gating" 
DOI:10.1109/ACCES.2020.2994611

"High resolution potassium sensing with large area graphene field-effect transistors" 
https://doi.org/10.1016/j.snb.2019.04.032

Downloads

  •   GFET-S20P Data Sheet   
    download
  •   Measurement Protocols and Basic Handling Instructions
    download


70+ Countries

702 Publications

2,500 +